Combined Functional and Metabolic Assessment of Brain Tumors using Hybrid PET/MR Imaging

Program # 479, 2015 ISMRM, Toronto, ON
Disclosure

Work principally supported by CAI\(^2\)R and/or performed by CAI\(^2\)R personnel

• The Center for Advanced Imaging Innovation and Research (CAI\(^2\)R, www.cai2r.net) at New York University School of Medicine is supported by NIH/NIBIB grant number P41 EB017183.
Perfusion Imaging: Glioma Grading

Grade III Glioma

Grade II Glioma
PET

FDG-PET: Radiation Necrosis

\(^{11}\text{C}\)-methionine PET: Recurrent Tumor

Hybrid PET/MR Imaging: Clinical Rationale and Applications in Brain Tumor Imaging

• Anatomical MRI to localize PET signal
 • Structural MRI helps with attenuation correction
 • PET helps to characterize the lesion
 • Reduced radiation dose compared to PET/CT

• Diagnostic MRI with PET
 • One-stop shop
 • Higher accuracy for diagnosis and follow up

• Multi-parametric MRI with dynamic PET acquisition
 • Tumor perfusion and hypoxia
Purpose

To correlate concurrently acquired rCBV with FDG uptake in brain tumor patients using hybrid PET/MR imaging

• To assess the diagnostic accuracy of each modality
 • Low versus High grade gliomas (treatment naïve group, Group A)
 • Recurrent tumor versus TIE/Treatment Induced Effects (post-treatment group, Group B)

• To evaluate if concurrently acquired functional (perfusion) and metabolic (FDG uptake) increases diagnostic accuracy of the imaging assessment

• To correlate rCBV with FDG uptake
Materials and Methods

Patients population

20 patients and 34 lesions

Group A (Treatment naive)
9 patients and 16 lesions

Group-B (Post-treatment)
11 patients with 18 lesions
Materials and Methods
PET /MR Imaging Protocol

PET/MR system (Biograph mMR; Siemens Healthcare)

Inject FDG (10 mCi of 18F fluoro-deoxyglucose)

Diagnostic MR for 60 minutes

List Mode PET for 60 minutes

Recon 30–60 minute data

Recon 40–60 minute data

Recon dynamic PET data (research)
Materials and Methods
MR-PWI Imaging Protocol

PET/MR system (Biograph mMR; Siemens Healthcare)

• Dynamic Susceptibility Contrast-enhanced T2* (DSC)
 • 0.1 mmol/kg of gadobutrol

• T2* sequence was acquired (single-shot echo planar imaging sequence; TE 30 ms; flip angle, 45 degrees, image matrix, 64x64; field of view, 24 cm; slice thickness, 4 mm).

• Perfusion parametric maps were generated using leakage correction and commercially available software (Olea Medical Inc.)
Materials and Methods

Image Analysis

- Image analysis was performed by a radiologist and a nuclear medicine physician in consensus.

- Results were recorded from the whole tumor in terms of $r\text{CBV}_{\text{mean}}$ and $r\text{CBV}_{\text{max}}$ for PWI and of SUV_{max} and SUV_{mean} values for PET.

- Both readers, blinded to the location of the lesions, predicted the tumor histological grade in group A and the likelihood of tumor recurrence versus TIE in the group B based solely on PWI and PET numerical data.

- Final diagnosis for each lesion was then cross-referenced to histopathology results when available (7 patients, 12 lesions) or clinical and imaging follow-up (13 patients, 22 lesions).
Materials and Methods
Statistical Analysis

• **ROC** curve analysis was conducted to assess the diagnostic utility of rCBV\textsubscript{max}, rCBV\textsubscript{mean}, SUV\textsubscript{max} and SUV\textsubscript{mean} in both groups and in the entire population

• **The Youden index** was used to identify an optimal cut-off value of each measure for classifying lesions as test positive in the sense of maximizing the average of sensitivity and specificity

• **Logistic regression** for correlated data was used to assess and compare modalities (PWI, PET) in terms of diagnostic accuracy in both groups and in the entire population

• **Pearson correlations** were used to characterize the association of rCBV\textsubscript{max} and rCBV\textsubscript{mean} with SUV\textsubscript{max} and SUV\textsubscript{mean} values.
Results

<table>
<thead>
<tr>
<th></th>
<th>$r\text{CBV}_{\text{max}}$</th>
<th>$r\text{CBV}_{\text{mean}}$</th>
<th>SUV_{max}</th>
<th>SUV_{mean}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion</td>
<td>≤ 5.01</td>
<td>≤ 1.74</td>
<td>≤ 5.6</td>
<td>≤ 4</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td>100%</td>
<td>50%</td>
<td>75%</td>
</tr>
<tr>
<td>Specificity</td>
<td>31.0%</td>
<td>74%</td>
<td>89.5%</td>
<td>89.7%</td>
</tr>
</tbody>
</table>

The Youden index
Results

<table>
<thead>
<tr>
<th></th>
<th>r(\text{CBV}_{\text{max}})</th>
<th>r(\text{CBV}_{\text{mean}})</th>
<th>(\text{SUV}_{\text{max}})</th>
<th>(\text{SUV}_{\text{mean}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>0.65</td>
<td>0.89</td>
<td>0.63</td>
<td>0.80</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.45 to 0.82</td>
<td>0.71 to 0.98</td>
<td>0.42 to 0.80</td>
<td>0.60 to 0.93</td>
</tr>
<tr>
<td>P Value</td>
<td>0.220</td>
<td><0.001</td>
<td>0.321</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Below are the receiver operating characteristic (ROC) curves for r\(\text{CBV}_{\text{mean}}\) and \(\text{SUV}_{\text{mean}}\):
Comparison of the effectiveness of MRI perfusion and fluorine-18 FDG PET-CT for differentiating radiation injury from viable brain tumor: a preliminary retrospective analysis with pathologic correlation in all patients

Vaios Hatzogloua,b,*, Gary A. Ulanera, Zhigang Zhangc, Kathryn Beald, Andrei I. Holodnya,b, Robert J. Younga,b

Table 2
Sensitivity and specificity of proposed threshold values for four variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Threshold (%)</th>
<th>AUC</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{UVR}</td>
<td>≥ 1.4</td>
<td>.943</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>$r_{\text{CBV}}_{\text{max}}$</td>
<td>≥ 1.8</td>
<td>.771</td>
<td>100</td>
<td>71</td>
</tr>
<tr>
<td>PSR</td>
<td>≥ 74</td>
<td>.829</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>rPH</td>
<td>≥ 2.2</td>
<td>.757</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>
Glioblastoma

rCBV
Mean: 3.50
Max: 5.79

FDG
Mean: 5.5
Max: 7.8
Recurrent lymphoma

rCBV
Mean: 1.87
Max: 2.07

FDG
Mean: 12.0
Max: 14.4
Radiation Necrosis (previously treated anaplastic meningioma)

rCBV
Mean: 1.74
Max: 5.1

FDG
Mean: 4.0
Max: 5.4
Results

<table>
<thead>
<tr>
<th></th>
<th>Group A: Treatment naïve</th>
<th></th>
<th>Group B: Post-therapy</th>
<th></th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy</td>
<td>Lower</td>
<td>Upper</td>
<td>Accuracy</td>
<td>Lower</td>
</tr>
<tr>
<td>PWI</td>
<td>90.0% (9/10)</td>
<td>48.4%</td>
<td>98.9%</td>
<td>94.1% (16/17)</td>
<td>64.4%</td>
</tr>
<tr>
<td>PET</td>
<td>40.0% (4/10)</td>
<td>6.5%</td>
<td>86.5%</td>
<td>55.6% (10/18)</td>
<td>28.2%</td>
</tr>
<tr>
<td>P Value</td>
<td></td>
<td>0.056</td>
<td></td>
<td></td>
<td>0.033*</td>
</tr>
</tbody>
</table>

Logistic Regression
Clinical Study

Relative value of magnetic resonance spectroscopy, magnetic resonance perfusion, and 2-(18F) fluoro-2-deoxy-D-glucose positron emission tomography for detection of recurrence or grade increase in gliomas

R. Prat, I. Gaiano, A. Lucas, J.C. Martínez, M. Martín, R. Amador, G. Reynèes

*Department of Neurosurgery, Hospital Universitario La Fe, Arca, Girona 21, Valencia 46019, Spain
†Department of Pathology, Hospital Universitario La Fe, Valencia, Spain
‡Department of Medical Oncology, Hospital Universitario La Fe, Valencia, Spain
§Department of Radiation Oncology, Hospital Universitario La Fe, Valencia, Spain

Table 2
Positive predictive value and negative predictive value of different imaging modalities to predict the presence of high grade glioma

<table>
<thead>
<tr>
<th></th>
<th>MRS (%)</th>
<th>FDG-PET (%)</th>
<th>MRP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPV</td>
<td>91.6</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>NPV</td>
<td>100</td>
<td>61.1</td>
<td>100</td>
</tr>
<tr>
<td>PPV (a)</td>
<td>100</td>
<td>66.6</td>
<td>100</td>
</tr>
<tr>
<td>NPV (a)</td>
<td>100</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

FDG-PET = 2-(18F) fluoro-2-deoxy-D-glucose positron emission tomography, MRP = MR perfusion, MRS = MR spectroscopy, NPV = negative predictive value, NPV(a), PPV(a) = negative predictive value and positive predictive value in the cases studied to differentiate viable tumour from radiation necrosis, PPV = positive predictive value.
Results

Pearson correlations

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameter</th>
<th>$r_{CBV_{\text{max}}}$</th>
<th>Correlation</th>
<th>P Value</th>
<th>$r_{CBV_{\text{mean}}}$</th>
<th>Correlation</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SUV</td>
<td></td>
<td>0.22</td>
<td>0.403</td>
<td>0.09</td>
<td>0.754</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>SUV</td>
<td></td>
<td>0.02</td>
<td>0.942</td>
<td>0.44</td>
<td>0.069</td>
<td></td>
</tr>
<tr>
<td>All Patients</td>
<td>SUV</td>
<td></td>
<td>0.13</td>
<td>0.482</td>
<td>0.31</td>
<td>0.076</td>
<td></td>
</tr>
</tbody>
</table>

![Graph of rCBV max vs Max FDG uptake early](image1)

![Graph of rCBV mean vs Max FDG uptake delay](image2)
Comparison of Spatial Congruence

rCBV
Mean: 2.43
Max: 5.0

Grade III Oligodendroglioma

FDG
Mean: 5.3
Max: 10.1
Comparison of ¹⁸F-FET PET and Perfusion-Weighted MR Imaging: A PET/MR Imaging Hybrid Study in Patients with Brain Tumors

Christian P. Fils¹, Norbert Galléks¹,², Gabriele Stoffels¹, Michael Sabe³, Hans J. Wittsack¹, Bernd Turowski⁴, Gerald Antoch⁵, Ke Zhang⁶, Gereon R. Fink¹,², Heinz H. Coenen¹,³, Nadim J. Shah¹,⁵,⁶, Hans Herzog¹,⁵, and Karl-Josef Langen¹,⁵,⁶

¹Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Center Jülich, Jülich, Germany; ²Department of Neurology, University of Cologne, Cologne, Germany; ³Department of Neurosurgery, University of Düsseldorf, Düsseldorf, Germany; ⁴Department of Diagnostic and Interventional Radiology, University of Düsseldorf, Düsseldorf, Germany; ⁵Section JARA-Brain, Jülich-Aachen Research Alliance (JARA), Jülich, Germany; ⁶Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany; and ⁷Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany

Key Words: PET/MR imaging; glioma; O-2-[¹⁸F]-fluoroethyl-L-tyrosine; PWI; rCBV; histogram

DOI: 10.2967/jnumed.113.129007

TABLE 1
Mean Results for Glioma and Meningioma Patients

<table>
<thead>
<tr>
<th>Tumor type</th>
<th>TBR</th>
<th>Tumor volume (cm³)</th>
<th>Spatial congruence (%)</th>
<th>Distance rCBV max. to ¹⁸F-FET max. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>¹⁸F-FET</td>
<td>rCBV</td>
<td>rCBF</td>
<td>MTT</td>
</tr>
<tr>
<td>Glioma</td>
<td>2.28</td>
<td>1.62</td>
<td>0.92</td>
<td>1.08</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0.99</td>
<td>1.13</td>
<td>0.44</td>
<td>0.31</td>
</tr>
<tr>
<td>Meningioma</td>
<td>2.37</td>
<td>5.33</td>
<td>0.67</td>
<td>0.64</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0.32</td>
<td>2.63</td>
<td>0.30</td>
<td>0.50</td>
</tr>
</tbody>
</table>

NA = not applicable.
Limitations of the study

- Small sample size, retrospective
- Use of FDG, which has high uptake in the normal brain tissue
 - FET, 11C-Methionine and FDOPA
- Used only early uptake of FDG

Conclusions

• Hybrid MR-PET can be useful in brain tumor patients
 • capability of providing complementary information in terms of both functional/perfusion and metabolic assessment of brain lesions
 • Better co-registration of images

• PWI demonstrated better diagnostic accuracy in both differentiating high from low-grade tumors and recurrent tumor from TIE.

• Poor correlation between rCBV and FDG uptake was observed
 • Future work: pixel-by-pixel correlation to assess spatial congruence between FDG and rCBV estimates
Thanks!

rajan.jain@nyumc.org